Spatial and temporal variability in snow accumulation at the West Antarctic Ice Sheet Divide over recent centuries

نویسندگان

  • J. Ryan Banta
  • Joseph R. McConnell
  • Markus M. Frey
  • Roger C. Bales
  • Kendrick Taylor
چکیده

[1] Ice cores collected in 2000 (ITASE 00-1) and 2005 (WDC05A, WDC05Q) from the West Antarctic Ice Sheet Divide (WAIS Divide) project site were used to investigate the spatial and temporal variability in accumulation. The ice cores were dated based on annual layer counting of multiple glaciochemical measurements resulting in bottom depth ages for WDC05A, WDC05Q, and ITASE 00-1 of 1775, 1521, and 1653 A.D., with mean annual accumulation rates of 0.200, 0.204, and 0.221 mweq a , respectively. Small-scale spatial variability (SSV) was determined using an analysis of variance of accumulation in the ice core array, thereby quantifying the uncertainty in individual accumulation records. Results indicate that the spatial variability was 0.030 mweq a , or approximately 15% of the average annual accumulation. An accumulation record representative of the WAIS Divide local area over recent centuries was developed using a principal component analysis to identify the coherent accumulation signal. The WAIS Divide local record exhibited 14% interannual variability (1 standard deviation of the mean) with the SSV reduced to 0.017 mweq a . Correlations of the WAIS Divide local accumulation record with atmospheric indices (e.g., Antarctic Oscillation) exhibited periods when the records oscillate in and out of phase. Thus, reconstructing local and global atmospheric indices from WAIS Divide accumulation records over recent centuries may prove problematic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of accumulation rates from a shallow firn core of the West Antarctic Ice Sheet

In recent decades the West Antarctic Ice Sheet has experienced warming and glacial retreat. Despite receiving growing attention, knowledge of glacial dynamics in this region remains limited. Snow accumulation data is sparse and fails to capture true spatial variability. A shallow firn core, drilled at the triple ice divide between Pine Island Glacier, Institute Ice Stream, and Rutford Ice Strea...

متن کامل

A synthesis of the Antarctic surface mass balance during the last 800 yr

Global climate models suggest that Antarctic snowfall should increase in a warming climate and mitigate rises in the sea level. Several processes affect surface mass balance (SMB), introducing large uncertainties in past, present and future ice sheet mass balance. To provide an extended perspective on the past SMB of Antarctica, we used 67 firn/ice core records to reconstruct the temporal varia...

متن کامل

Ground-based Measurements of Spatial and Temporal Variability of Snow Accumulation in East Antarctica

[1] The East Antarctic Ice Sheet is the largest, highest, coldest, driest, and windiest ice sheet on Earth. Understanding of the surface mass balance (SMB) of Antarctica is necessary to determine the present state of the ice sheet, to make predictions of its potential contribution to sea level rise, and to determine its past history for paleoclimatic reconstructions. However, SMB values are poo...

متن کامل

Climate sensitivity of the century-scale hydrogen peroxide (H2O2) record preserved in 23 ice cores from West Antarctica

[1] We report new century-scale ice core records of hydrogen peroxide (H2O2), a major atmospheric oxidant, from 23 locations across the West Antarctic Ice Sheet (WAIS) and use the spatial variability of (multi-) annual mean H2O2 concentrations in snow and firn to investigate the sensitivity of ice core H2O2 preservation to mean annual temperature and accumulation rate. In agreement with the ice...

متن کامل

Spatial Patterns in Mass Balance of the Siple Coast and Amundsen Sea Sectors, West Antarctica

Local rates of change in ice-sheet thickness were calculated at 15 sites in West Antarctica using the submergence velocity technique. This method entails a comparison of the vertical velocity of the ice sheet, measured using repeat global positioning system surveys of markers, and local long-term rates of snow accumulation obtained using firn-core stratigraphy. Any significant difference betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008